Monday 13 February 2017

Moving Average Error Model

Dies ist eine grundlegende Frage auf Box-Jenkins MA-Modelle. Wie ich verstehe, ist ein MA-Modell im Grunde genommen eine lineare Regression von Zeitreihenwerten Y gegen frühere Fehlerterme et. D. h. Das heißt, die Beobachtung Y wird zuerst gegen ihre vorherigen Werte Y zurückgerechnet. Y und dann werden ein oder mehrere Y-Hold-Werte als Fehlerterme für das MA-Modell verwendet. Aber wie werden die Fehler-Begriffe in einem ARIMA (0, 0, 2) - Modell berechnet Wenn das MA-Modell ohne einen autoregressiven Teil verwendet wird und somit keinen geschätzten Wert, wie kann ich möglicherweise einen Fehler Begriff gefragt 7 Apr 12 at 12:48 MA Modellschätzung: Nehmen wir eine Serie mit 100 Zeitpunkten an und bezeichnen sie als MA (1) - Modell ohne Intercept. Dann wird das Modell durch ytvarepsilont - thetavarepsilon, quad t1,2, cdots, 100quad (1) gegeben. Der Fehlerterm wird hier nicht beobachtet. Um dies zu erreichen, haben Box et al. Zeitreihenanalyse: Prognose und Steuerung (3. Ausgabe). Seite 228. Dass der Fehlerterm rekursiv berechnet wird, also ist der Fehlerterm für t1, varepsilon y thetavarepsilon Jetzt können wir dies nicht berechnen, ohne den Wert von theta zu kennen. Um dies zu erhalten, müssen wir die anfängliche oder vorläufige Schätzung des Modells berechnen, siehe Box et al. Dass die ersten q Autokorrelationen des MA (q) - Prozesses von Null verschieden sind und in Form der Parameter des Modells als rhokdisplaystylefrac theta1theta theta2theta cdotstheta thetaq quad geschrieben werden können K1,2, cdots, q Der obige Ausdruck forrho1, rho2cdots, rhoq in Form von theta1, theta2, cdots, thetaq liefert q Gleichungen in q Unbekannten. Vorläufige Schätzungen der Thetas können durch Ersetzen von Schätzungen rk für rhok in obiger Gleichung erhalten werden. Man beachte, daß rk die geschätzte Autokorrelation ist. In Abschnitt 6.3 - Anfängliche Schätzungen für die Parameter finden wir mehr Diskussion. Lesen Sie bitte weiter. Angenommen, wir erhalten die anfängliche Schätzung theta0.5. Dann varepsilon y 0.5varepsilon Nun, ein anderes Problem ist, haben wir nicht Wert für varepsilon0, weil t beginnt bei 1, und so können wir nicht berechnen varepsilon1. Zum Glück gibt es zwei Methoden zwei erhalten diese, Bedingte Wahrscheinlichkeit Unbedingte Wahrscheinlichkeit Laut Box et al. Abschnitt 7.1.3 Seite 227. Können die Werte von varepsilon0 als Näherung zu null ersetzt werden, wenn n mittel oder groß ist, ist diese Methode Bedingte Wahrscheinlichkeit. Andernfalls wird Unbedingte Likelihood verwendet, wobei der Wert von varepsilon0 durch Rückprognose erhalten wird, Box et al. Empfehlen diese Methode. Lesen Sie mehr über die Rückprognose unter Abschnitt 7.1.4 Seite 231. Nach dem Erhalten der anfänglichen Schätzungen und des Wertes von varepsilon0 können wir schließlich mit der rekursiven Berechnung des Fehlerterms fortfahren. Dann ist die letzte Stufe, um den Parameter des Modells (1) schätzen, denken Sie daran, dies ist nicht die vorläufige Schätzung mehr. Bei der Schätzung der Parameter theta verwende ich das Verfahren der nichtlinearen Schätzung, insbesondere den Levenberg-Marquardt-Algorithmus, da MA-Modelle nichtlinear auf ihren Parameter sind. In der Praxis liefert der gleitende Durchschnitt eine gute Schätzung des Mittelwerts der Zeitreihe, wenn der Mittelwert konstant ist Oder langsam ändern. Im Fall eines konstanten Mittelwertes wird der grßte Wert von m die besten Schätzungen des zugrunde liegenden Mittels liefern. Ein längerer Beobachtungszeitraum wird die Effekte der Variabilität ausmachen. Der Zweck der Bereitstellung eines kleineren m ist es, die Prognose auf eine Änderung in dem zugrunde liegenden Prozess zu ermöglichen. Um zu veranschaulichen, schlagen wir einen Datensatz vor, der Änderungen im zugrundeliegenden Mittel der Zeitreihen enthält. Die Abbildung zeigt die Zeitreihen für die Darstellung zusammen mit der mittleren Nachfrage, aus der die Serie generiert wurde. Der Mittelwert beginnt als eine Konstante bei 10. Ab dem Zeitpunkt 21 erhöht er sich um eine Einheit in jeder Periode, bis er zum Zeitpunkt 30 den Wert von 20 erreicht. Dann wird er wieder konstant. Die Daten werden simuliert, indem dem Mittelwert ein Zufallsrauschen aus einer Normalverteilung mit Nullmittelwert und Standardabweichung 3 zugeführt wird. Die Ergebnisse der Simulation werden auf die nächste Ganzzahl gerundet. Die Tabelle zeigt die simulierten Beobachtungen für das Beispiel. Wenn wir die Tabelle verwenden, müssen wir bedenken, dass zu einem gegebenen Zeitpunkt nur die letzten Daten bekannt sind. Die Schätzwerte des Modellparameters, für drei verschiedene Werte von m, werden zusammen mit dem Mittelwert der Zeitreihen in der folgenden Abbildung gezeigt. Die Abbildung zeigt die gleitende durchschnittliche Schätzung des Mittelwerts zu jedem Zeitpunkt und nicht die Prognose. Die Prognosen würden die gleitenden Durchschnittskurven nach Perioden nach rechts verschieben. Eine Schlussfolgerung ergibt sich unmittelbar aus der Figur. Für alle drei Schätzungen liegt der gleitende Durchschnitt hinter dem linearen Trend, wobei die Verzögerung mit m zunimmt. Die Verzögerung ist der Abstand zwischen dem Modell und der Schätzung in der Zeitdimension. Wegen der Verzögerung unterschätzt der gleitende Durchschnitt die Beobachtungen, während der Mittelwert zunimmt. Die Vorspannung des Schätzers ist die Differenz zu einer bestimmten Zeit im Mittelwert des Modells und dem Mittelwert, der durch den gleitenden Durchschnitt vorhergesagt wird. Die Vorspannung, wenn der Mittelwert zunimmt, ist negativ. Bei einem abnehmenden Mittelwert ist die Vorspannung positiv. Die Verzögerung in der Zeit und die Bias in der Schätzung eingeführt sind Funktionen von m. Je größer der Wert von m. Desto größer ist die Größe der Verzögerung und der Vorspannung. Für eine stetig wachsende Serie mit Trend a. Die Werte der Verzögerung und der Vorspannung des Schätzers des Mittelwerts sind in den folgenden Gleichungen gegeben. Die Beispielkurven stimmen nicht mit diesen Gleichungen überein, weil das Beispielmodell nicht kontinuierlich zunimmt, sondern als Konstante beginnt, sich in einen Trend ändert und dann wieder konstant wird. Auch die Beispielkurven sind vom Rauschen betroffen. Die gleitende Durchschnittsprognose der Perioden in die Zukunft wird durch die Verschiebung der Kurven nach rechts dargestellt. Die Verzögerung und die Vorspannung nehmen proportional zu. Die nachstehenden Gleichungen zeigen die Verzögerung und die Vorspannung von Prognoseperioden in die Zukunft im Vergleich zu den Modellparametern. Diese Formeln sind wiederum für eine Zeitreihe mit einem konstanten linearen Trend. Wir sollten dieses Ergebnis nicht überraschen. Der gleitende Durchschnittsschätzer basiert auf der Annahme eines konstanten Mittelwerts, und das Beispiel hat einen linearen Trend im Mittel während eines Teils des Studienzeitraums. Da Realzeitreihen den Annahmen eines Modells nur selten gehorchen, sollten wir auf solche Ergebnisse vorbereitet sein. Wir können auch aus der Figur schließen, dass die Variabilität des Rauschens den größten Effekt für kleinere m hat. Die Schätzung ist viel volatiler für den gleitenden Durchschnitt von 5 als der gleitende Durchschnitt von 20. Wir haben die widerstrebenden Wünsche, m zu erhöhen, um den Effekt der Variabilität aufgrund des Rauschens zu verringern und m zu verringern, um die Prognose besser auf Veränderungen anzupassen Im Mittel. Der Fehler ist die Differenz zwischen den tatsächlichen Daten und dem prognostizierten Wert. Wenn die Zeitreihe wirklich ein konstanter Wert ist, ist der erwartete Wert des Fehlers Null und die Varianz des Fehlers besteht aus einem Term, der eine Funktion von und ein zweiter Term ist, der die Varianz des Rauschens ist. Der erste Term ist die Varianz des Mittelwertes mit einer Stichprobe von m Beobachtungen, vorausgesetzt, die Daten stammen aus einer Population mit einem konstanten Mittelwert. Dieser Begriff wird minimiert, indem man m so groß wie möglich macht. Ein großes m macht die Prognose auf eine Änderung der zugrunde liegenden Zeitreihen unempfänglich. Um die Prognose auf Veränderungen anzupassen, wollen wir m so klein wie möglich (1), aber dies erhöht die Fehlerabweichung. Praktische Voraussage erfordert einen Zwischenwert. Prognose mit Excel Das Prognose-Add-In implementiert die gleitenden Durchschnittsformeln. Das folgende Beispiel zeigt die Analyse des Add-In für die Beispieldaten in Spalte B. Die ersten 10 Beobachtungen sind mit -9 bis 0 indexiert. Im Vergleich zur obigen Tabelle werden die Periodenindizes um -10 verschoben. Die ersten zehn Beobachtungen liefern die Startwerte für die Schätzung und werden verwendet, um den gleitenden Durchschnitt für die Periode 0 zu berechnen. Die Spalte MA (10) zeigt die berechneten Bewegungsdurchschnitte. Der gleitende Mittelwert m ist in Zelle C3. Die Fore (1) Spalte (D) zeigt eine Prognose für einen Zeitraum in die Zukunft. Das Prognoseintervall ist in Zelle D3. Wenn das Prognoseintervall auf eine größere Zahl geändert wird, werden die Zahlen in der Spalte Vorwärts verschoben. Die Err (1) - Spalte (E) zeigt die Differenz zwischen der Beobachtung und der Prognose. Zum Beispiel ist die Beobachtung zum Zeitpunkt 1 6. Der prognostizierte Wert, der aus dem gleitenden Durchschnitt zum Zeitpunkt 0 gemacht wird, beträgt 11,1. Der Fehler ist dann -5.1. Die Standardabweichung und mittlere mittlere Abweichung (MAD) werden in den Zellen E6 bzw. E7 berechnet.


No comments:

Post a Comment